

Contours in feet.

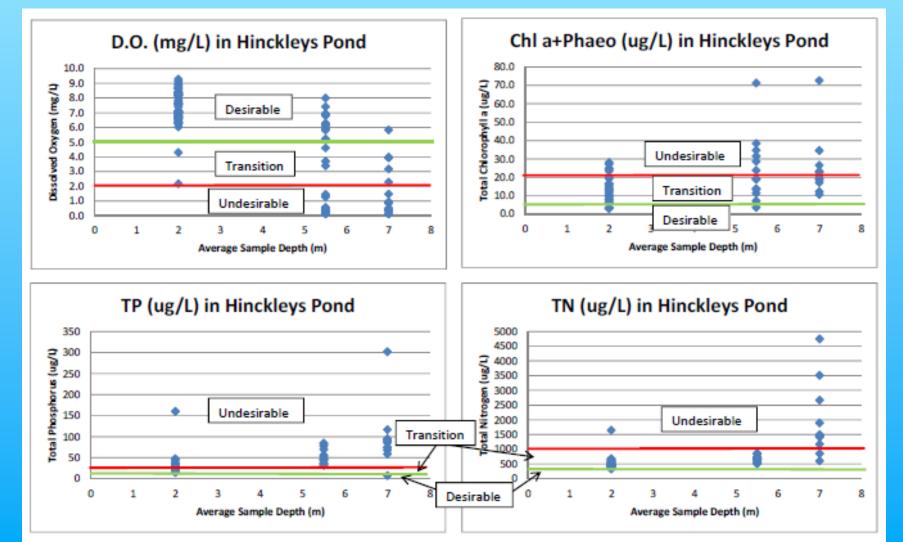


Table 1. Bathymetric features of Hinckleys Pond.

Depth (ft)	Area (ac)	Area (ha)	Volume (ac ft)	Volume (ft3)	Volume (m3)
0-5	174.0	70.2	800.3	34860565	987551
5-10	146.1	58.9	647.9	28220458	799446
10-15	113.0	45.6	476.8	20770581	588402
15-20	77.7	31.3	258.4	11255792	318861
20-25	25.7	10.3	75.3	3279565	92906
25-28	4.5	1.8	11.2	485862	13764
Total			2269.8	98872823	2800930

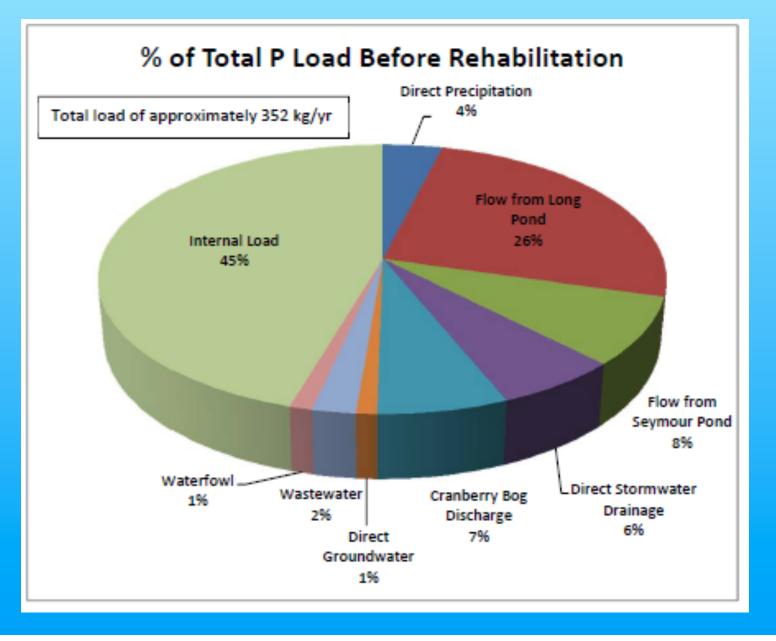
Red and green lines indicate approx. thresholds

Contours in feet, numbers are sediment sampling locations, redline is approx. "muck" line

 Table 1. Sediment quality data from the December 2009 sampling.

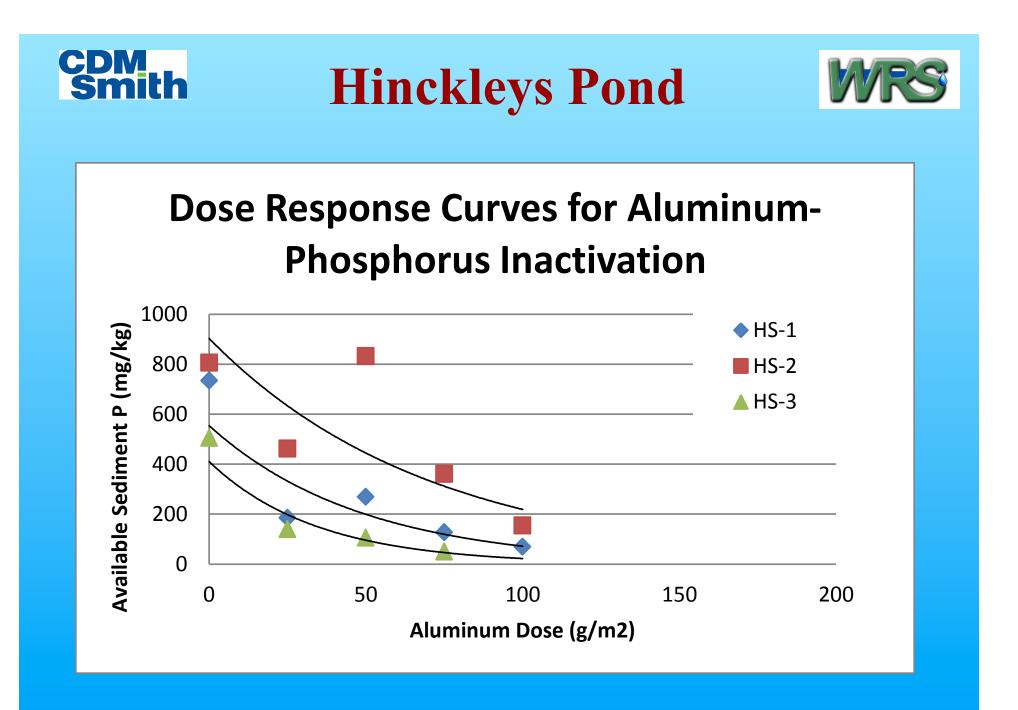
	Total P		Fe-P	Loose-P	
Station	(mg/kg)	% Solids	(mg/kg)	(mg/kg)	
West	6720	10.2	1380	0.45	
East	95.4	75.8	34.2	0.21	

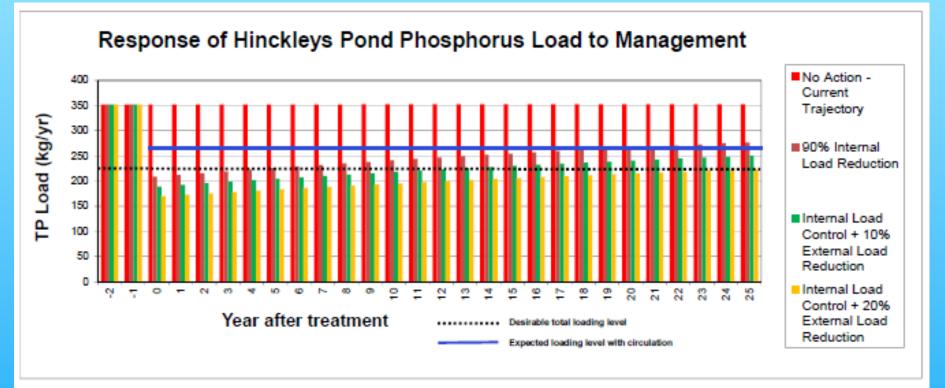
					Initial Con	centration	Fe-P (mg/kg) at Aluminum Dose =			
	Total P		%	% Volatile	Fe-P	Loose-P				
Station	(mg/kg)	% Solids	Moisture	Solids	(mg/kg)	(mg/kg)	25 g/m2	50 g/m2	75 g/m2	100 g/m2
HS-1	6560	11.0	91.8	33.4	733	<6.8	184	268	126	68.5
HS-2	6350	11.8	91.8	32.6	808	<6.4	462	832	361	155
HS-3	5930	14.2	91.6	33.8	504	<5.3	139	104	48.9	ND

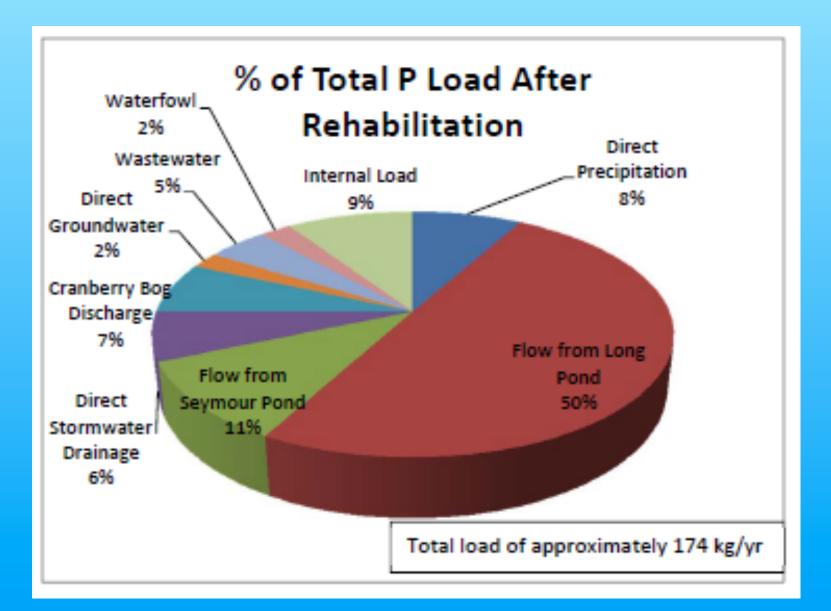


Water and nutrient loads to Hinckleys Pond.

	Est.			Est.	Best Est.		Est.	Best Est.		
	Range of	Best Est.		Range of	of TP		Range of	of TN		TN:TP
	Flow (cu.	of Flow	% of Total	TP Load	Load	% of Total	-	Load	% of Total	Load
Source	m/yr)	(cu.m/yr)	Flow	(kg/yr)	(kg/yr)	P Load	(kg/yr)	(kg/yr)	N Load	Ratio
500100	651,000		11000	(16/11)	(16/11)	1 LOUU	(16/11/	(16/11/	N LOUU	Ratio
	to			6.5 to			407 to			
Direct Precipitation	1,017,000	813,900	12.4	25.4	13.8	3.9	814	570	11.9	41.3
Direct recipitation	4,000,000	013,500	72.4	23.4	15.0	5.5	014	570	11.5	41.5
	to			62.5 to			1500 to			
Flow from Long Pond		5,000,000	75.9	150	90.0	25.5	2810	2155	45.1	23.9
	900,000	3,000,000	75.5	150	50.0	25.5	2010	2155	45.1	23.5
Flow from Seymour	to			21.3 to			799 to			
Pond		1,065,000	16.2	42.7	28.8	8.2	1385	1144	23.9	39.8
Direct Stormwater	1,230,000	1,000,000	10.2	12.7	20.0	0.2	1000		20.0	
Drainage to Hinckleys	59.500 to			9.4 to						
Pond	147,300	103,400	1.6		21.8	6.2	76 to 339	163	3.4	7.5
Cranberry Bog	36,400 to	,		9.3 to			12.3 to			
Discharge	54,600	45,500	0.7	84.9	22.8	6.5	18.4	15	0.3	0.7
Direct Groundwater		· · · ·								
Drainage to Hinckleys										
Pond (without	156,000									
Wastewater from	to			1.6 to						
within 300 ft)	573,200	364,600	5.5	11.5	3.6	1.0	78 to 287	182	3.8	50.6
, Wastewater via	,	,								
Groundwater to										
Hinckleys Pond	9,600 to			2.4 to			119 to			
(within 300 ft)	23,000	9,600	0.1	31.6	7.6	2.2	418	157	3.3	20.7
Waterfowl	0	0	0.0	2.0 to 8.0	4.0	1.1	15 to 26	19	0.4	4.8
				76.2 to			229 to			
Internal Load	0	0	0.0	261	160.0	45.4	522	376	7.9	2.4
Total		6,588,100	100.0	0	352.4	100.0		4781	100.0	13.6







- Circulation will lower available P, stabilize the system, and minimize cyanobacteria, but may not prevent all algal blooms.
- Aluminum treatment can initially achieve more desirable conditions, but with continued loading, conditions will revert.
- Watershed management protects the investment and prolongs benefits of any treatment.

		Current	90% Internal Load Reduction (P	75% Internal Load Reduction (spring- summer	90% Internal Load Reduction plus 20% Load Reduction	10% External	90% Internal Load Reduction plus 20% External
	Current	Predicted	inactivation	circulation	from Long	Load	Load
Pond Variable (units)	Actual Value	Value	by aluminum)	system)	Pond	Reduction	Reduction
Total Phosphorus (kg/yr)	352.4	351.5	207.6	231.6	187.6	191.0	174.4
Total Phosphorus (ug/L)	30	32	18	21	16	17	15
Total Nitrogen (ug/L)	525	520	520	520	448	485	449
Secchi Depth (m)	1.7	1.6	2.5	2.3	2.7	2.7	2.9
Mean Chlorophyll a (ug/L)	13.2	13.8	6.7	7.8	5.8	5.9	5.2
Peak Chlorophyll a (ug/L)	43.8	46.1	23.1	26.7	20.2	20.7	18.3
Chlorophyll a >10 ug/L (%)	75.0%	65.4%	14.4%	22.5%	8.8%	9.7%	5.9%
Chlorophyll a >15 ug/L (%)	51.9%	33.9%	3.0%	5.9%	1.5%	1.7%	0.9%
Chlorophyll a >20 ug/L (%)	34.6%	16.1%	0.7%	1.6%	0.3%	0.4%	0.2%
Chlorophyll a >30 ug/L (%)	11.5%	3.6%	0.1%	0.2%	0.0%	0.0%	0.0%
Chlorophyll a >40 ug/L (%)	3.8%	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%

- Do not believe any number as extremely accurate by itself; look at relative values, and focus on the change in distribution of predicted algae (chlorophyll) levels.
- Some level of watershed management appears necessary for long-term improvement to a desirable condition

Approximate cost of alternative systems

		Circulatio	Phosphorus Inactivation						
								Water Column	
Air Driven		SolarBee		WEARS		Sediment		(with circulation)	
Capital	0&M	Capital	0&M	Capital	0&M	Capital	0&M	Capital	0&M
200,000	10,000	240,000	2,000	200,000	3,000	550,000	0	50,000	25,000

- Think in terms of a 20-25 year timeframe; mixing may only be slightly less expensive than aluminum over that period, but with potentially less desirable results
- The combination system (far left and far right) is potentially the most expensive, but provides maximum flexibility to maintain desirable conditions
- Some form of aluminum treatment appears worthwhile; further sediment testing is needed to refine dose and cost assessments

Watershed management actions that can be taken directly by Harwich include:

- Capture and infiltrate runoff from James Road south of pond
- Capture and infiltrate runoff from Catherine Rose Rd north of pond
- Encourage reduction in phosphorus laden fertilizer use and trapping of runoff on individual land parcels within the watershed
- Examine the drainage from Cape Cod Technical School and Rt 124 that currently enters the Jenkins Bog; reduce inputs
- Aggressively pursue stormwater issues on the Harwich side of Long and Seymour Ponds
- Aggressively enforce Title 5 regulations regarding wastewater disposal and educate residents about the importance of proper disposal system management

More challenging approaches that are worth pursuing include:

- Work with the Town of Brewster to investigate internal load inactivation potential for Seymour Pond
- Work with the Town of Brewster to investigate watershed loading to Seymour and Long Ponds and options for reduction
- Work with the Cape Cod Cranberry Growers Association and the local bog owners to implement the best possible nutrient management plans; target a 50% reduction in discharge phosphorus concentrations

