ADDENDA

TO THE

1997 MASSHIGHWAY HIGHWAY DESIGN MANUAL

INTERIM GUIDANCE

FOR
CONFORMANCE
WITH THE

AASHTO

A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS 2001

APRIL 2003

INTERIM GUIDANCE TO THE 1997 HIGHWAY DESIGN MANUAL

The following information is addenda to the 1997 MassHighway Highway Design Manual. These changes were made to address updated design guidance from the AASHTO *A Policy on Geometric Design of Highways and Street 2001* (Green Book). Significant changes were made from the previous version of the AASHTO Green Book that affect the design of roadways in Massachusetts. These changes were made by AASHTO design committees to address the need for improved safety and mobility while recognizing the need for agencies and designers to be more sensitive in their approach to design.

On March 14, 2002, the Federal Highway Administration (FHWA) officially adopted the 2001 AASHTO Green Book as minimum design standards for projects on the National Highway System. At that time, the FHWA gave the states one year to address compliance of the Green Gook with their own standards. This document serves that purpose. Changes were made primarily to address items affecting the 13 AASHTO controlling criteria. In addition, this document includes dimensions in both the English and Metric systems of measurement, with most dimensions rounded to even English values.

Designers should design to desirable standards where practical and minimum standards where feasible. This is the flexibility in design inherent in the AASHTO guidance. The context of the roadway should always be considered and exceptions to the minimum standards may be warranted based on constraints. The normally requires justification and documentation in the form of a design exception report to assure that the designer used sound engineering judgment to address safety and mobility objectives.

MassHighway is currently considering more significant revisions to the *Highway Design Manual* relative to context sensitivity and community concerns. In the interim period between now and when a fully revised manual is issued, this document should be used to design all roadways in Massachusetts. Since most of the values contained in this document are within the range of the desirable and minimum standards in the *1997 Highway Design Manual*, projects currently under design or construction may continue to use the 1997 values at the direction of the project manager.

ADDENDUM TO THE 1997 HIGHWAY DESIGN MANUAL

Page 3.12.0 Section 3.4.1 Design Speed

First sentence is replaced with the following:

Design speed is a selected speed used to determine the various design features of the roadway.

Page 3.13.0 Section 3.4.1 Design Speed

Table 3.6 is replaced with the following Table:

Table 3.6
DESIGN SPEEDS
(A Design Exception is required when speed selected is outside Table Values)

	Metric	Units (meters)
FUNCTIONAL CLASSIFICATION	U/R	DESIGN SPEED
FREEWAY/EXPRESSWAY	URBAN	DESIGN SPEED SHOULD NOT BE LESS THAN 80 km/h
	RURAL	110 km/h should be used, in mountainous terrain, a design speed of 80 km/h to 100 km/h may be used
ARTERIAL	URBAN	MAY RANGE FROM 50 km/h TO 100 km/h. BELOW 70 km/h APPROPRIATE FOR BUILT-UP AREAS. ABOVE 80 km/h IS APPROPRIATE FOR OUTLYING AREAS.
	RURAL	LEVEL - 100 to 120 km/h
		ROLLING - 80 to 100 km/h
		MOUNTAINOUS - 60 to 80 km/h
COLLECTOR	URBAN	MINIMUM OF 50 km/h
	RURAL	OVER 2000 ADT:
		LEVEL - 100 km/h ROLLING - 80 km/h MOUNTAINOUS - 60 km/h
		SEE PAGE 426 OF 2001 AASHTO POLICY ON GEOMETRIC DESIGN FOR ADT BELOW 2000.
LOCAL	URBAN	MAY RANGE FROM 30 km/h TO 50 km/h DEPENDING ON AREA CONTROLS.
	RURAL	OVER 2000 ADT:
		LEVEL - 80 km/h ROLLING - 60 km/h MOUNTAINOUS - 50 km/h
		SEE PAGE 385 OF 2001 AASHTO POLICY ON GEOMETRIC DESIGN FOR ADT BELOW 2000.

Table 3.6 (CONTINUED)

DESIGN SPEEDS

(A Design Exception is required when speed selected is outside Table Values)

	Englis	h Units (feet)
FUNCTIONAL CLASSIFICATION	U/R	DESIGN SPEED
FREEWAY/EXPRESSWAY	URBAN	DESIGN SPEED SHOULD NOT BE LESS THAN 50 mph
	RURAL	70 mph should be used, in mountainous terrain, a design speed of 50 mph to 60 mph may be used
ARTERIAL	URBAN	MAY RANGE FROM 30 mph TO 60 mph. BELOW 45 mph APPROPRIATE FOR BUILT-UP AREAS. ABOVE 50 mph IS APPROPRIATE FOR OUTLYING AREAS.
	RURAL	LEVEL - 60 to 75 mph
		ROLLING - 50 to 60 mph
		MOUNTAINOUS - 40 to 50 mph
COLLECTOR	URBAN	MINIMUM OF 30 mph
	RURAL	OVER 2000 ADT:
		LEVEL - 60 mph
		ROLLING - 50 mph MOUNTAINOUS - 40 mph
		SEE PAGE 426 OF 2001 AASHTO POLICY ON GEOMETRIC DESIGN FOR ADT BELOW 2000.
LOCAL	URBAN	MAY RANGE FROM 20 mph TO 30 mph DEPENDING ON AREA CONTROLS.
	RURAL	OVER 2000 ADT:
		LEVEL - 50 mph ROLLING - 40 mph MOUNTAINOUS - 30 mph
		SEE PAGE 385 OF 2001 AASHTO POLICY ON GEOMETRIC DESIGN FOR ADT BELOW 2000.

Page 3.14.0 Section 3.4.2 Running Speed

Third paragraph: replace 30 km/h to 70 km/h with 30 km/h to 75 km/h.

Page 3.15.0 Section 3.4.3 Posted Speed

Delete Figure 3-2

Page 3.17.0 Section 3.5.1.3 Composition

First paragraph: replace 4100 kilograms with 4000 kilograms

Page 3.18.0 Section 3.5.1.4 Levels of Service

Second paragraph: replace <u>Table 3.7</u> with The Highway Capacity Manual (HCM)

Page 3.18.0 Section 3.5.1.4 Levels of Service

Table 3.8 is replaced with the following Table:

Table 3.8 MINIMUM LEVEL OF SERVICE GUIDELINES

HIGHWAY TYPE	TYPE OF AREA AND APPROPRIATE LEVEL OF SERVICE										
HIGHWAT TIPE	RURAL LEVEL	RURAL ROLLING	RURAL MOUNTAINOUS	URBAN AND SUBURBAN							
FREEWAY ¹	В	В	В	С							
ARTERIAL	В	В	С	С							
COLLECTOR	С	С	D	D							
LOCAL	D	D	D	D							

Note: Level of Service D, E, and F are not normally used for design.

1. SEE HIGHWAY CAPACITY MANUAL TO DETERMINE LEVEL OF SERVICE FOR FREEWAYS IN DESIGN YEAR.

Page 3.19.0

Section 3.5.1.4

Levels of Service

Delete Table 3.7

Page 3.23.0

Section 3.6.1

Stopping Sight Distance

Third paragraph is replaced with the following:

The approximate braking distance of a vehicle on a level roadway traveling at the design speed of the roadway may be determined from the following equation:

Metric	US Customary
$d = 0.039 \frac{V^2}{a}$	$d = 1.075 \frac{V^2}{a} $ (3-1)
where:	where:
d = braking distance, m; V = design speed, km/h; a = deceleration rate, m/s ²	 d = braking distance, ft; V = design speed, mph; a = deceleration rate, ft/s²

Studies documented in the literature show that most drivers decelerate at a rate greater than 4.5 m/s² [14.8 ft/s²] when confronted with the need to stop for an unexpected object in the roadway. Approximately 90 percent of all drivers decelerate at rates greater than 3.4 m/s² [11.2 ft/s²]. Such decelerations are within the driver's capability to stay within his or her lane and maintain steering control during the braking maneuver on wet surfaces. Therefore, 3.4 m/s² [11.2 ft/s²] (a comfortable deceleration for most drivers) is recommended as the deceleration threshold for determining stopping sight distance. Implicit in the choice of this deceleration threshold is the assessment that most vehicle braking systems and the tire-pavement friction levels of most roadways are capable of providing a deceleration of at least 3.4 m/s² [11.2 ft/s²]. The friction available on most wet pavement surfaces and the capabilities of most vehicle braking systems can provide braking friction that exceeds this deceleration rate.

Fourth paragraph: replace 1070 mm with 1080 mm and 150 mm with 600 mm

Table 3.9 is replaced by the following Table:

Table 3.9 STOPPING SIGHT DISTANCES

		Metric				Ľ	JS Customai	ry	
	Brake	Braking	Stopping sigh	nt distance		Brake	Braking	Stopping sigh	nt distance
Design	reaction	distance		7	Design	reaction	distance		,
speed	distance	on level	Calculated	Design	speed	distance	on level	Calculated	Design
(km/h)	(m)	(m)	(m)	(m)	(mph)	(ft)	(ft)	(ft)	(ft)
20	13.9	4.6	18.5	20	15	55.1	21.6	76.7	80
30	20.9	10.3	31.2	35	20	73.5	38.4	111.9	115
40	27.8	18.4	46.2	50	25	91.9	60.0	151.9	155
50	34.8	28.7	63.5	65	30	110.3	86.4	196.7	200
60	41.7	41.3	83.0	85	35	128.6	117.6	246.2	250
70	48.7	56.2	104.9	105	40	147.0	153.6	300.6	305
80	55.6	73.4	129.0	130	45	165.4	194.4	359.8	360
90	62.6	92.9	155.5	160	50	183.8	240.0	423.8	425
100	69.5	114.7	184.2	185	55	202.1	290.3	492.4	495
110	76.5	138.8	215.3	220	60	220.5	345.5	566.0	570
120	83.4	165.2	248.6	250	65	238.9	405.5	644.4	645
130	90.4	193.8	284.2	285	70	257.3	470.3	727.6	730
}				,	75	275.6	539.9	815.5	820
					80	294.0	614.3	908.3	910

Note: Brake reaction distance predicated on a time of 2.5 s; deceleration rate of 3.4 m/s² [11.2 ft/s²] used to determine calculated sight distance.

The computed distances for various speeds at the assumed conditions are shown in Table 3.9 and were developed from the following equation:

Metric	US Customary								
$d = 0.278 Vt + 0.039 \frac{V^2}{a}$	$d = 1.47Vt + 1.075\frac{V^2}{a} $ (3-2)								
where:	where:								
t = brake reaction time, 2.5 s; V = design speed, km/h; a = deceleration rate, m/s ²	t = brake reaction time, 2.5 s; V = design speed, mph; a = deceleration rate, ft/s ²								

Reference: " A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2001

First paragraph under (Table 3.9): replace formula as follows:

Metric	US Customary
$d = \frac{V^2}{254 \left(\left(\frac{a}{9.81} \right) \pm G \right)}$	$d = \frac{V^2}{30\left(\left(\frac{a}{32.2}\right) \pm G\right)} $ (3-3)

Table 3.10 is replaced by the following Table:

Table 3.10
GRADE ADJUSTMENTS FOR STOPPING SIGHT DISTANCES

an Police	· ·	N	letri c						US C	ustom	ary		1
Design	(Stoppir	ng sigh	t distar	nce (m	1)	Design		Stopping sight distance (f				
speed		wngra			Upgrad es			Do	wngra	des	U	pgrade	es
(km/h)	3%	6%	9%	3%	6%	9%	(mph)	3%	6%	9%	3%	6%	9%
20	20	20	20	19	18	18	15	80	82	85	75	74	73
30	32	35	35	31	30	29	20	116	120	126	109	107	104
40	50	50	53	45	44	43	25	15 8	165	173	147	143	140
50	6 6	70	74	61	5 9	5 8	- 30	2 05	215	227	200	184	179
60	87	92	97	80	77	75	35	257	271	287	237	229	22 2
70	110	116	124	100	97	93	40	315	3 33	354	2 89	278	269
80	136	144	154	123	118	114	45	378	400	427	344	331	320
90	164	174	187	148	141	136	50	446	474	5 07	405	3 88	375
100	194	2 07	2 23	- 174	167	16 0	55	5 20	5 53	5 93	469	450	433
110	227	24 3	2 62	2 03	194	186	60	59 8	63 8	68 6	53 8	515	495
120	2 63	2 81	304	234	2 23	214	65	6 82	72 8	785	612	5 84	561
130	302	3 23	3 50	267	254	243	70	771	8 25	891	69 0	65 8	631
general or exact to							75	8 66	927	1003	772	736	704
							80	965	1035	1121	85 9	817	782

Table 3.11 is replaced by the following Table:

Table 3.11
DECISION SIGHT DISTANCE

		Meti	ric					US Cus	tomary		
Design	De	cision	sight di	stance	(m)	Design	sign Decision sight distance				
speed		Avoidance maneuver speed Avoidance maneu					neuv er	ar dinase			
(km/ h)	Α	В	С	D	Ε	(mph)	Α	В	С	D	E
50	70	155	145	170	195	30	220	490	450	5 35	62 0
60	95	195	170	205	235	35	275	5 90	5 25	625	720
70	115	235	200	235	275	40	330	6 90	600	715	825
80	140	280	230	270	315	45	395	800	675	800	930
90	170	325	270	315	360	50	465	910	750	890	1030
100	20 0	370	315	355	400	55	5 35	1030	865	9 80	1135
110	235	420	330	380	430	60	610	1150	990	1125	1280
120	265	470	360	415	470	65	6 95	1275	10 50	1220	1365
130	3 05	52 5	390	450	510	70	780	1410	1105	1275	1445
						75	875	154 5	1180	1365	154 5
						80	970	16 85	1260	1455	165 0

Avoidance Maneuver A: Stop on rural road—t = 3.0 s

Avoidance Maneuver B: Stop on urban road—t = 9.1 s

Avoidance Maneuver C: Speed/path/direction change on rural road—t varies between 10.2 and 11.2 s

Avoidance Maneuver D: Speed/path/direction change on suburban road—t varies between

12.1 and 12.9 s

Avoidance Maneuver E: Speed/path/direction change on urban road—t varies between 14.0 and 14.5 s

Reference: " A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2001

Second paragraph under (Table 3.11): replace 1070 mm with 1080 mm, and 150 mm with 600 mm

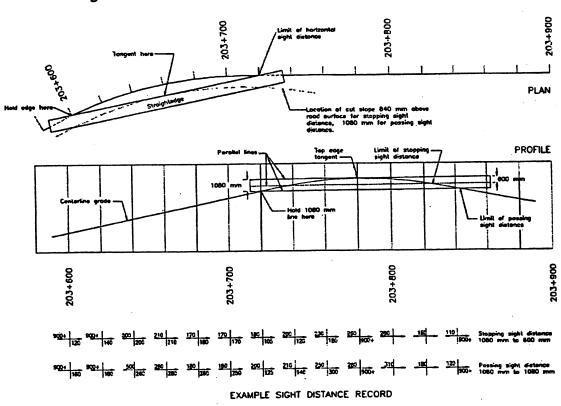

Table 3.12 is replaced by the following Table:

Table 3.12
PASSING SIGHT DISTANCES

		Metric					US Cust	omary	
Design spe ed (km/h)	Assumed (km Passed vehicle	l speeds	Passing sigh From Exhibit 3-6	nt distance (m) Rounded for design	Design speed (mph)		d speeds ph) Passing vehicle 28	Passing sigh From Exhibit 3-6 706	nt distance (ft) Rounded for design 710
30 40 50 60 70 80 90 100 110 120 130	29 36 44 51 59 65 73 79 85 90	44 51 59 66 74 80 88 94 100 105 109	200 266 341 407 482 538 613 670 727 774 812	200 270 345 410 485 540 615 670 730 775 815	25 30 35 40 45 50 55 60 65 70 75 80	22 26 30 34 37 41 44 47 50 54 56 58	32 36 40 44 47 51 54 57 60 64 66 68	897 1088 1279 1470 1625 1832 1984 2133 2281 2479 2578 2677	900 1090 1280 1470 1625 1835 1985 2135 2285 2480 2580 2680

Figure 3.4 is replaced by the following Figure:

Figure 3-4 SCALING AND RECORDING SIGHT DISTANCES ON PLANS

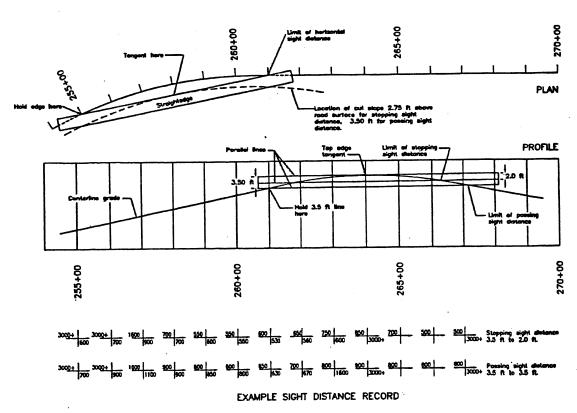


Table 4.2 is replaced by the following Table:

Table 4.2
MINIMUM RADIUS FOR DESIGN OF RURAL HIGHWAYS, URBAN FREEWAYS,
AND HIGH-SPEED URBAN STREETS USING LIMITING VALUES OF e AND f

		Me	etric	•				US Cu	stomary		
Dooigo		Limiting		Calculated	Rounded	Design		Limiting		Calculated	
Design	Maximum		Total	Radius	Radius	Speed	Maximum	Values of	Total	Radius	Radius
(km/h)	e (%)	f	(e/100 +		(m)	(mph)	e (%)	f	(e/100 + f)	(ft)	(ft)
		0.18	0.22	14.3	15	15	4.0	0.175	0.215	70.0	70
20	4.0	0.18	0.21	33.7	35	20	4.0	0.170	0.210	127.4	125
30	4.0	0.17	0.21	60.0	60	25	4.0	0.165	0.205	203.9	205
40	4.0	0.17	0.20	98.4	100	30	4.0	0.160	0.200	301.0	300
50	4.0	0.15	0.19	149.1	150	35	4.0	0.155	0.195	420.2	- 420
60	4.0	0.13	0.18	214.2	215	40	4.0	0.150	0.190	563.3	· 565
70	4.0	0.14	0.18	279.8	280	45	4.0	0.145	0.185	732.2	730
80	4.0	0.14	0.17	375.0	375	50	4.0	0.140	0.180	9 29.0	930
90	4.0	0.13	0.16	491.9	490	55	4.0	0.130	- 0.170	1190.2	1190
100	4.0	0.12	0.10	401.0		60	4.0	0.120	0.160	1505.0	1505
20	6.0	0.18	0.24	13.1	15.	15	6.0	0.175	0.235	64.0	65
20 30	6.0	0.17	0.23	30.8	30	20	6.0	0.170	0.230	116.3	115
40	6.0	0.17	0.23	54.7	55	25	6.0	0.165	0.225	185.8	185
50	6.0	0.16	0.22	89.4	90	30	6.0	0.160	0.220	273.6	275
60	6.0	0.15	0.21	134.9	135	35	6.0	0.155	0.215	381.1	380
70	6.0	0.14	0.20	192.8	195	40	6.0	0.150	0.210	509.6	510
80	6.0	0.14	0.20	251.8	250	45	6.0	0.145	0.205	660.7	660
90	6.0	0.13	0.19	335.5	3 35	50	6.0	0.140	0.200	836.1	835
100	6.0	0.12	0.18	437.2	435	55	6.0	0.130	0.190	1065.0	1065
110	6.0	0.11	0.17	560.2	5 60	60	6.0	0.120	0.180	1337.8	1340
120	6.0	0.09	0.15	755.5	755	65	6.0	0.110	0.170	1662.4	1660
130	6.0	0.08	0.14	950.0	9 50	70	6.0	0.100	0.160	2048.5	2050
130	5.0	. 5.55	3			75	6.0	0.090	0.150	2508.4	2510
						80	6.0	0.080	0.140	3057.8	3060
Nate:	n recogniti	on of safet	v conside	rations, use	of $e_{max} = 4$.0% sho	uld be limit	ed to urba	n condition	IS	

Reference: "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2001

Page 4.12.0 Section 4.1.3

Horizontal Stopping Sight Distance

Replace the fifth paragraph with the following:

1. Figures 4-6, 4-7 and 4-9 provide the criteria for stopping sight distance. The height of eye is 1080 millimeters and the height of object is 600 millimeters. The line-of-sight intercept with the view obstruction is at the midpoint of the sight line and 840 millimeters above the center of the inside lane.

Figures 4-6 and 4-7 are replaced by the following Figure:

Figure 4-6
DESIGN CONTROLS FOR STOPPING SIGHT DISTANCE ON HORIZONTAL
CURVES

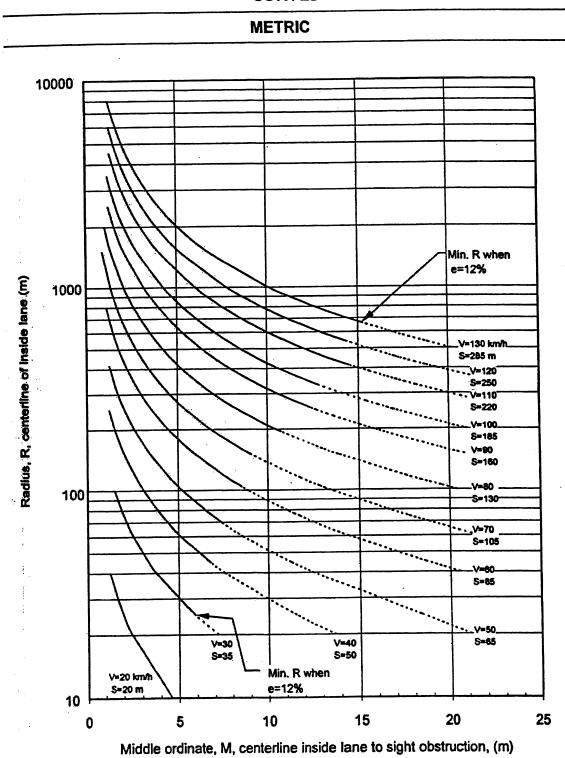


Figure 4-6
DESIGN CONTROLS FOR STOPPING SIGHT DISTANCE ON HORIZONTAL
CURVES (CONTINUED)

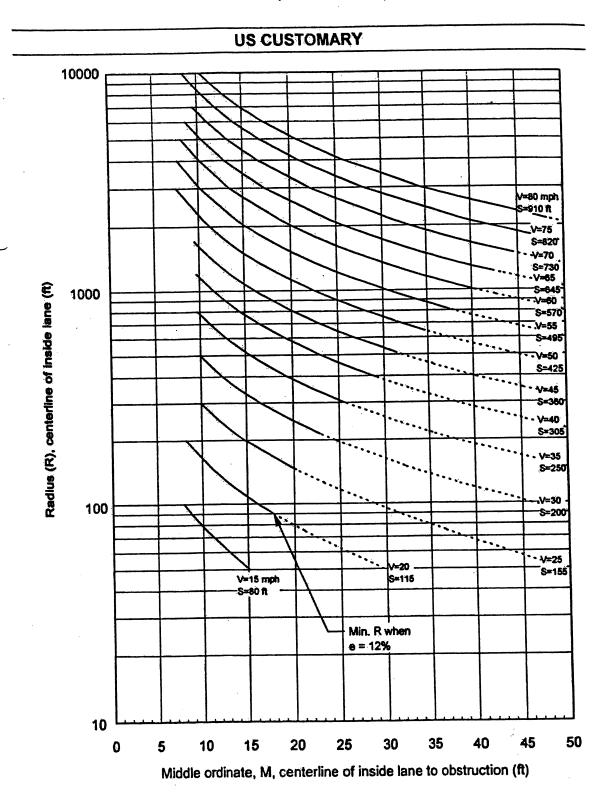


Figure 4-8: replace <u>610 mm</u> with **840 mm**

Add the following Figure 4-9

Figure 4-9

DIAGRAM ILLUSTRATING COMPONENTS FOR DETERMINING HORIZONTAL SIGHT DISTANCE

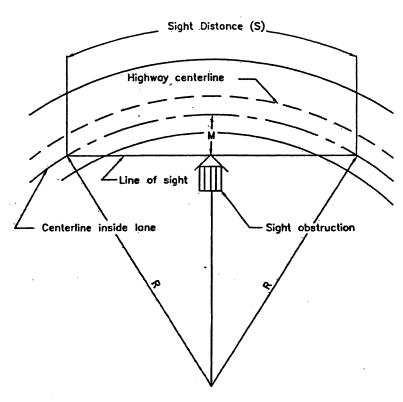


Table 4.3 is replaced with the following Table:

Table 4.3
MAXIMUM GRADES FOR RURAL AND URBAN FREEWAYS

	Metric									US Customary					
		Desi	gn Spe	eeds (k	(m/h)		Design Speeds (mph)								
Type of	80	90	100	110	120	130	50	5 5	60	65	70	75	80		
Terrain			Grade	es (%)ª					Gr	ades (%) ^a				
Level	4	4	3	3	3	3	4	4	3	3	3	3	3		
Rolling	5	5	4	4	4	4	5	5	4	4	4	4	4		
Mountainous	6	6	6	5			6	6	6	5	5	_	-		

Grades 1% steeper than the value shown may be provided in mountainous terrain or in urban areas with crucial right-of way controls.

MAXIMUM GRADES FOR URBAN ARTERIALS

			Ме	tric					US C	usto	mary	/	
	N	laxim	um g	rade	(%) 1	or		Max	imun	n gra	de (%	b) for	
	spec	ified	desig	n spe	ed (km/h)	sp	ecifi	ed de	sign	spee	d (mp	oh)
Type of terrain	50	60	70	80	90	100	30	35	40	45	50	55	60
Level	8	7	6	6	5	. 5	8	7	7	6	6	5	5
Rolling	9	8	7	7	6	6	9	8	8	7	7	6	6
Mountainous	11	10	9	9	8	8	11	10	10	9	9	8	8

MAXIMUM GRADES FOR RURAL ARTERIALS

				Me	tric							us (Custo	mar	у		
		М	axim	um g	rade	(%) 1	or				Max	cimur	n gra	de (%	6) for	•	
Type of	,	speci	ified (desig	n spe	ed (km/h))		sp	ecifi	ed de	esign	spec	d (m	ph)	
terrain	60	70	80	90	100	110	120	130	40	45	50	55	60	65	70	75	80
Level	5	5	4	4	3	3	3	3	5	5	4	4	3	3	3	3	3
Rolling	6	6	5	5	4	4	4	4	6	6	5	5	4	4	4	4	4
Mountainous	8	7	7	6	6	5	5	5	8	7	7	6	6	5	5	5	5

Table 4.3 (CONTINUED)

MAXIMUM GRADES FOR URBAN COLLECTORS

				Me	tric							US C	ustor	nary			
		s				%) for ed (km.				;			n grad sign s)	
Type of terrain	30	40	50	60	70	80	90	100	20	25	30	35	40	45	50	55	60
Level	9	9	9	9	8	7	7	6	9	9	9	. 9	9	8	7	7	6
Rolling	12	12	11	10	9	8	8	7	12	12	11	10	10	9	8	8	7
Mountainous	14	13	12	12	11	10	10	9	14	13	. 12	12	12	11	10	10	9

Note: Short lengths of grade in urban areas, such as grades less than 150 m [500 ft] in length, one-way downgrades, and grades on low-volume urban collectors may be up to 2 percent steeper than the grades shown above.

MAXIMUM GRADES FOR RURAL COLLECTORS

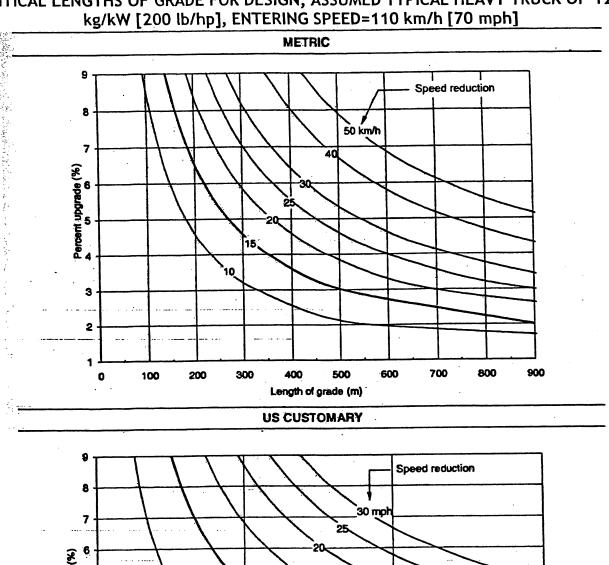
				Me	tric							US C	usto	nary			
			Maxir	num g	rade (%) for					Ma	ximun	n grad	le (%)	for		
		sp	ecified	desig	n spee	ed (km/	'n)				specif	ied de	sign s	peed	(mph))	
Type of terrain	30	40	50	60	70	80	90	100	20	25	30	35	40	45	50	55	60
Level	7	7	7	7	7	6	6	5	7	7	7	7	7	7	6	6	5
Rolling	10	10	9	8	8	7	7	6	10	10	9	9	8	8	7	7	6
Mountainous	12	11	10	10	10	9	9	8	12	11	10	10	10	10	9	9	8

Note: Short lengths of grade in rural areas, such as grades less than 150 m [500 ft] in length, one-way downgrades, and grades on low-volume rural collectors may be up to 2 percent steeper than the grades shown above.

MAXIMUM GRADES FOR LOCAL RURAL ROADS

				N	/letri	ic							JS C	usto	omai	ry		
		spe	Max	imum d des	gra sign	de (%) fo	or m/h)								%) fo ed (m		
Type of terrain	20			50		70			100	15	20	25	30	40	45	50	55	60
Level	9	8	7	7	7	7	6	6	5	9	8	7	7	7	7	6	6	5
Rolling	12	11	11	10	10	9	8	7	6	12	11	11	10	10	9	8	7	6
Mountainous	17	16	15	14	13	12	10	10	_	17	16	15	14	13	12	10	10	

GRADES FOR LOCAL URBAN STREETS


Grades for local residential streets should be as level as practical, consistent with the surrounding terrain. The gradient for local streets should be less than 15 percent. Where grades of 4 percent or steeper are necessary, the drainage design may become critical. On such grades special care should be taken to prevent erosion on slopes and open drainage facilities.

For streets in commercial and industrial areas, gradient design desirably should be less than 8 percent, grades should desirably be less than 5 percent, and flatter grades should be encouraged.

To provide for proper drainage, the desirable minimum grade for streets with outer curbs should be 0.30 percent, but a minimum grade of 0.20 percent may be used.

Figure 4-9 is replaced with the following Figure:

FIGURE 4-9
CRITICAL LENGTHS OF GRADE FOR DESIGN, ASSUMED TYPICAL HEAVY TRUCK OF 120
kg/kW [200 lb/hp], ENTERING SPEED=110 km/h [70 mph]

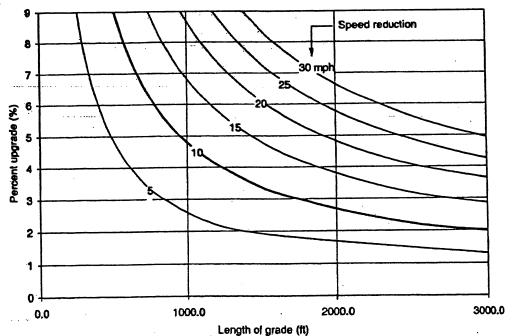


Table 4.4 is replaced with the following Table:

Table 4.4
DESIGN CONTROLS FOR STOPPING SIGHT DISTANCE FOR CREST VERTICAL CURVES

	Me	etric			US Cus	stomary	
Design	Stopping sight	Rate of v	_	Design	Stopping sight	Rate of v	_
speed (km/h)	distance (m)	Calculated	Design	speed (mph)	distance (ft)	Calculated	Desigr
20	20	0.6	1	15	80	3.0	3
30	35	1.9	2	20	115	6.1	7
40	50	3.8	4 .	25	155	11.1	12
50	65	6.4	7	30	200	18.5	19
60	85	11.0	11	35	250	29.0	29
70	105	16.8	17	40	3 05	43.1	44
80	130	25.7	26	45	360	60.1	61
90	160	38. 9	39	50	425	83.7	84
100	185	52.0	52	55	495	113.5	114
110	220	73.6	74	60	570	150 .6	151
120	250	95.0	95	65	645	192 .8	193
130	285	123.4	124	70	730	246.9	247
				75	8 20	311.6	312
				80	910	3 83.7	384

Rate of vertical curvature, K, is the length of curve per percent algebraic difference in intersecting grades (A). K = L/A

Reference: "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2001

Page 4.26.0

Section 4.2.3.2

Sag Vertical Curves

Add the following Paragraph:

Designer should check the sight distance under bridges.

Table 4.5 is replaced with the following Table:

Table 4.5
DESIGN CONTROLS FOR SAG VERTICAL CURVES

	Me	tric			US Cus	stomary	
Design speed (km/h)	Stopping sight distance (m)	Rate of v		Design speed (mph)	Stopping sight distance (ft)	Rate of v	
20	20	2.1	3	15	80	9.4	10
30	35	5.1	6	20	115	16.5	17
40	50	8.5	9	25	155	25.5	26
50	65	12.2	· 13	30	200	36.4	37
60	85	17.3	18	35	250	49.0	49
70	105	22.6	23	40	305	63.4	64
80	130	29.4	30	45	360	78.1	79
90	160	37.6	38	50	425	95.7	96
100	185	44.6	45	55	495	114.9	115
110	220	54.4	55	60	570	135.7	136
120	250	62.8	63	65	645	156.5	157
130	285	72.7	73	70	730	180.3	181
				75	820	205.6	206
				80	910	231.0	231

Rate of vertical curvature, K, is the length of curve (m) per percent algebraic difference intersecting grades (A). K = L/A

Table 4.7 is replaced with the following Table:

Table 4.7
VALUES FOR DESIGN ELEMENTS RELATED TO DESIGN SPEED AND HORIZONTAL
CURVATURE

														• •														
4	L (m)	~	NC 00 CM	0	30 31 46	3.7 36 67	4.7 46 73	5.0 61 77	6.6 50 86 6.6 50 86	6.0 62 93	}	•											lude tangent		It normal crown			
	V = 120 km/h	~	1 1 1 2 N	0 0 2	2.5 22 35	33 31 47	4.2 40 60	4.4 42 65	4.7 45 67 5.0 47 71	2	6.8 65 62	12											noff (does not Inc	n 'Tangent-to-te	n, superelevate 1			
	Ve 110 timh	7	XC O O	0 0 0	RC 18 26	25 26 26	3.6 32 47	3.8 33 60	4.0 35 63	4.8 42 63	6.1 46 67	6.8 51 78		99				٠				redius of curve assumed design speed	rate of superelevation minimum length of runoff (does not include tangent	runout) as discussed in "Tangent-to-Curve Transciss" section	section remove adverse crown, superelevate at normal crown			•
	V= 100 km/h	2 4	3	2 2		RC 16 25	3,1 26 38	3.3 27 41	3.6 20 43	4.2 % % % % % % % % % % % % % % % % % % %	5 4.6 37 55	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	7 5.6 46 69	-							86	F redlu		•	NC = remo	slope		
	^	E	3		9 2	RC 15 23	2 2.1 16 24 1.2 2.1 3.1 2.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3	6 2.6 27 32	20 22 32	2 2.6 20 20 20 20 20 20 20 20 20 20 20 20 20	17 3.0 30 40	20 4.2 32 40	60 36 5	52 5.4 41 6;	57 5.0 45 68		: _				L-							
RIC	7	٦	Las			0 NC 0		20 2.4 17 20 22 17 17	21 2.5 18 2	22 2.7 19 2 26 3.1 22 3	27 3.4 24	30 3.6 26	20 70 20 20 20 20 20 20 20 20 20 20 20 20 20	41 4.8 35	46 5.3 36	65 6.0 42	R. 25	• ·										
METRIC	٧-١	الله	Lns (%) Lns L		2 Y	0 NC 0	2 2 2 2 2 3	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18 2.1 14	18 2.2 14	21 2.0 18	23 3.1 20	25 3.4 22	32 4.2 27	36 4.7 31	41 . 6.4 36	60 39	52 R 196	2 2	وا								
	h V,= 60 tm/h	,	Lns (%) Lns l	O V	2 2	o NC 0	0 Y	2 2	0 RC 12	0 FC 12	17 2.3 14	17 2.6 15	17 2.6 17		27 4.0 24		36 5.6 33		44 6:0 V6	13	¢ \$	2	8 ,	•				
	NAME SO MAN	l١	1 0 2 ns (%) Lns L	O MC		2 2	0 NC 0	2 2		9 ; 2 ;	2 2 2 2 2 2	0 RG ==	16 2.1 12	15 2.4 13 16 2.8 16	10 3.3 10	24 3.9 22	27 4.2 23 30 4.7 26	32 6.0 28	5.5 29	35 5.6 31	37 6.7 32	9	42 6.0 33		وا ۽			
	V.* 40 km/h	۱	. (%) Ls L	0 2 2 3	2 2	2 2	2	2 S		S S		2 2	0 RC 10	0 NC 10	2.5 13	3.1 16	3.5 10	22 4.1 21	24 4.4 23	25 4.6 23 26 4.6 24	27 4.8 25	26 6.0 26 30 5.2 27	30 5.4 26	32 5.6 26	36 - 6.0 31	1	٠,	
•	Amy 30 km/h	(E) _	(%) Lns Lns Lns	NC D	2 2 2		2 2	S	2 2	O O	0 0		9 9 9	0 0		RC 10	2.3 11	1 3.0 14	4 3.3 16 2	4 3.6 17 2	5 3.0 16 2	7 4.1 20	4.2 20	20 4.6 22	2005	26 5.4 20 28 6.8 28	32 6.0 29 37 R = 30	
	100 m	E	2 4 12 4	0	0 (0	0 6		•			o (0 0		 •	• •	. 01	 = =	7 12 1	 : :	5 10	5 2	2 %	A 18
		*	× 6	1	5000 NG		2000 NG	1500 NC	1400 NG	1200 NG	1000 NC		700 NG	900 NC		2 S	260 NG	200 MG	150 AC	140 80	120 2.2	110 2.4		8 9	2 6	9 Q	20 20	}

	Ve 65 mph Ve 70 mph Ve 7	L (A)	4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 4 9 2 9 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10	LAS LAS CAS LAS CAS CAS CAS CAS CAS CAS CAS CAS CAS C	NC 0 0 NC 0 0 NC 0 0 NC 0	0	2 2	56 84 NC 60 90 NC 63 95	2.3 7.3 108 2.3 60	23 64 86 2,5 75 113 2,6 86 132 3,1 100	2 3.7 111 167 4.2 133 190 4.7	4.0 112 167 4.4 132 198 4.9 165 232	6.4 171 256	6.3 159 238 6.8	2			5.9 157 250 750 1500 1500 1500 1500 1500 1500 150									R = radius of curve	•	runout) as discussed in "Tangent-to-Curve Transition"	,	RC = remove adverse crown, superelevate at normal crown			
US CUSTOMARY	V= 35 moh V= 40 meh V= 45 meh V= 50 meh V= 55 meh	T (W) T (W)	2 4 6 2 4 6 2 4 6 2 4 8 2 4	(%) the the							0 0 NC 0 0 RC 44 67 RC 48 7	0 0 RC 41 62 RC 44 67 2.2 53 /8 .4.9 49	30 56 RC 41 62 2.3 51 // 2./ 00 5/		2 55 75 45 47 58 48 87 3.3 73 110 3.6 91 137 4.3 110 165	60 2.8 54 81 3,3 68 102 3,8 84 127 4,3 103 155 4.9	66 3.0 58 87 3.6 74 112 4.1 91 137 4.6 110 166	64 96 3.8 79 118 4.4 98 147 4.9 118 176	3,6 70 105 4,1 65 127 4,7 104 157 5.2 126 187 3.7	3.9 75 113 4.5 93 140 3.0 111 107 8.6 134 202 212 R.	6.1 106 158 5.7 127 190 6.0 144 216	4.8 63 139 6.4 112 168	6.1 99 148 6.7 116 177	5 128 5.4 105 157 3.8 122 163 P. C. COU		3	5.8 105 158 R. = 380	6.0 109 164	F. 273					
	401 96 - 3	A Ver Zo mon Ver S	(E)	(%) Line Line (%) Line Line (%) Line Line	0 NC 0	NC 0 0 NC 0 0 NC 0	NC 0 0 NC 0 0 NC 0	O CHO O NO			NC 0 NC 0 0 NC 0	NC 0 0 NC 0 0 NC 0	NC 0 0 NC 0 0 NC 0	NO O NO O ON		NC O O NC O O NC O O O O O O O O O O O O		NC 0 0 2.1 36 54 2.7 4	RC 32 49 2.3 39 69 2.9 6	RC 32 49 2.6 45 67 3.3 6	2.2 36 54 3.0 51 77 3.7 6	27 44 66 3,4 56 87 4.1 7	2.9 47 71 3.7 63 95 4.4 6		3.6 56 56 4.3 74 111 5.1 5	6		93 139	78 117 5.7 98 147	5.3 86 129 6.0 103 154	2 2 2 2 2	į	ol .	
		Ve 15 moh	뒤	R • 2 4	O NC	000 NC 0 0	000 NC 0 0			0 00 NC 00 0		000 NC 0	000 MC 0 0	3500 NC 0 0	000 NC 0	2500 NC 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 X 00	1200 NC 0 0	000 NC 0	900 NG 00 00		600 2.1 32 48		450 2.1 42 64		300 3.5 54 81	250 3.8 58 88	4.1 63	2 :	100 5.5 85 127	1	

Reference: " A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2001

Minimum Lengths for Superelevation Runoff High-Speed Roadways (Design Speed above 20 km/h)

Table 4.8 is replaced with the following Table:

Table 4.8
MAXIMUM RELATIVE GRADIENTS

	Metric			US Customa ry	
	Maximum	Equivalent		Maximum	Equivalent
Design speed	relativ e	maximum	Design speed	relative .	maximu m
(km/h)	gradient (%)	relative slope	(mph)	gradient (%)	relative slope
20	0.80	1:125	15	0.78	1:128
30	0.75	1:133	20	0.74	1:135
40	0.70	1:143	25	0.70	1:143
50	0.65	1:150	30	0.66	1:152
60	0.60	1:167	35	0.62	1:161
70	0.55	1:182	40	0.58	1:172
80	0.50	1:200	45	0.54	1:185
90	0.47	1:213	50	0.50	1:200
100	0.44	1:227	55	0.47	1:213
110	0.41	1:244	60	0.45	1:222
120	0.38	1:263	65	0.43	1:233
130	0.35	1:286	70	0.40	1:250
			75	0.38	1:263
			80	0.35	1:286

Reference: "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2001

Page 4.40.0

Section 4.3.5

Shoulder Superelevation

Second paragraph: replace <u>0.25</u> meters with **0.30** meters

Page 4.45.0

Section 4.3.7

Low Speed Roadways (Design Speed 60 km/h and below)

Replace the title above in parenthesis: 60 km/h with 70 km/h

Table 4.9 is replaced with the following Table:

Table 4.9

MINIMUM RADII AND MINIMUM LENGTHS OF SUPERELEVATION RUNOFF FOR LIMITING VALUES OF e AND f (LOW-SPEED URBAN STREETS)

							Metric							
Design				.!			T.	Mis	N		Total	M E		Min L
sbeed	Max		lotai		MAX		- סומ		אם ! י	,			C	()
(km/h)	e/100	Maxf	Max f (e/100 + f)	(E)	e/100	Maxf	(e/100 + f)	(E)	e/100	Maxt	(e/100 + 1)	E)	اد	
20	0.06	0.350	0.410	10	0.04	0.350	0.390		0.00	0.350	0.350	10	1.25	15
) 	90.0	0.312	0.372	50	0.04	0.312	0.352	20	0.00	0.312	0.312	52	1.20	8
	0.06	0.252	0.312	40	0.04	0.252	0.292	45	0.00	0.252	0.252	20	1.15	52
02	90.0	0.214		02	0.04	0.214	0.254	80	0.00	0.214	0.214	90	1.10	52
8 6	900	0.186		115	0.04	0.186	0.226	125	0.00	0.186	0.186	150	1.05	8
8 8	0.06	0.163		175	0.04	0.163	0.203	190	0.00	0.163	0.163	235	8	စ္က
			-) SN	US Customary							
Design														
speed	Max		Total	Min R	Max		Total	Min R	Max		Total	Min R		Min L
(mph)	e/100	Max f	Max f (e/100 + f)	(£)	e/100	Max f	(e/100 + f)	(ft)	e/100	Max f	(e/100 + f)	(#)	ပ	Œ
15	0.06	0.330	0.390	40	0.04	0.330	0.370	40	0.00	0.330	0.330	45	4.25	55
50	0.06	0.300		75	0.04	0.300	0.340	80	0.00	0.300	0.300	90	4.00	75
25	0.06	0.252		135	0.04	0.252	0.292	145	0.00	0.252	0.252	165	3.75	80
300	0.06	0.221		215	0.04	0.221	0.261	230	0.00	0.221	0.221	275	3.50	06
35	0.06	0.197		320	0.04	0.197	0.231	345	0.00	0.197	0.197	415	3.25	<u>8</u>
40	0.06	0.178	0.238	450	0.04	0.178	0.218	490	0.00	0.178	0.178	009	3.00	115
45	0.06	0.163		605	0.04	0.163	0.203	665	0.00	0.163	0.163	830	2.75	125
			١											

Page 5.02.0 Section 5.1.1

Travel Lanes

Table 5.1 is replaced with the following Tables on the next pages:

Table 5.1 RECOMMENDED ROADWAY SECTION WIDTHS

FREEWAYS

English Units (feet)

	TRAVEL MINIMUM	PAVED RIGHT USABLE SHOULDER WIDTH MIN.	LEFT USABLE SHOULDER W/ 6 OR MORE LANES DESIRABLE WIDTH	LEFT USABLE SHOULDER W/ 4 TRAVEL LANES DESIRABLE WIDTH	LEFT USABLE SHOULDER WIDTH MINIMUM
Ī	12 FT.	10 FT. (12 FT.*)	10 FT. (12 FT.*)	8 FT. (10 FT.*)	4 FT.

Metric Units (meters)

-	TRAVEL MINIMUM	PAVED RIGHT USABLE SHOULDER WIDTH MIN.	LEFT USABLE SHOULDER W/ 6 OR MORE LANES DESIRABLE WIDTH	LEFT USABLE SHOULDER W/ 4 TRAVEL LANES DESIRABLE WIDTH	LEFT USABLE SHOULDER WIDTH MINIMUM
i	3.66 m	3.05 m (3.66 m*)	3.05 m (3.66 m*)	2.44m (3.05 m*)	1.22 m

* With truck volumes over 250 vehicles/day

Note: 2 ft. (610 mm) added to usable shoulder width for minimum offset to vertical elements over 8" (200 mm) high.

ARTERIALS

English Units (feet)

MIN. LANE WIDTH (FT) FOR DESIGN VOLUME (VEH/DAY)

DESIGN SPEED	UNDER 400	400 TO 1500	1500 TO 2000	OVER-2000
30 mph	11 Ft.	11 Ft.	11 Ft.	12 Ft.
35 mph	11 Ft.	11 Ft.	11 Ft.	12 Ft.
40 mph	11 Ft.	11 Ft.	11 Ft.	12 Ft.
45 mph	11 Ft.	11 Ft.	11 Ft.	12 Ft.
50 mph	11 Ft.	11 Ft.	12 Ft.	12 Ft.
55 mph	11 Ft.	11 Ft.	12 Ft.	12 Ft.
60 mph	12 Ft.	12 Ft.	12 Ft.	12 Ft.
65 mph	12 Ft.	12 Ft.	12 Ft.	12 Ft.
70 mph	12 Ft.	12 Ft.	12 Ft.	12 Ft.
75 mph	12 Ft.	12 Ft.	12 Ft.	12 Ft.
		TH OF USARI E SHO	III DER (ET)*	

ALL SPEEDS 4 Ft. 6 Ft. 8 Ft.

Metric Units (meters)

MIN. LANE WIDTH (m) FOR DESIGN VOLUME (VEH/DAY)

	MINA PURE MIDIN	()		
DESIGN SPEED	UNDER 400	400 TO 1500	1500 TO 2000	OVER-2000
50 km/h	3.35 m	3.35 m	3.35 m	3.66 m
55 km/h	3.35 m	3.35 m	3.35 m	3.66 m
60 km/h	3.35 m	3.35 m	3.35 m	3.66 m
70 km/h	3.35 m	3.35 m	3.35 m	3.66 m
80 km/h	3.35 m	3.35 m	3.66 m	3.66 m
90 km/h	3.35 m	3.35 m	3.66 m	3.66 m
100 km/h	3.66 m	3.66 m	3.66 m	3.66 m
105km/h	3.66 m	3.66 m	3.66 m	3.66 m
110 km/h	3.66 m	3.66 m	3.66 m	3.66 m
120 km/h	3.66 m	3.66 m	3.66 m	3.66 m

MINIMUM WIDTH OF USABLE SHOULDER (m)*

	MINATION TILE	TITOL COMPETENCE		
ALL SPEEDS	1.22 m	1.83 m	1.83 m	2.44 m

^{* 2} ft. (610 mm) added to usable shoulder width for minimum offset to vertical elements over 8" (200 mm) high.

COLLECTORS* & LOCAL ROADS* Minimum Lane Widths/Shoulder Widths for Design Volume (VEH/DAY)

English Units (feet)

DESIGN SPEED		UNDER 100	100-250	251-400	401-1500	1501-2000	0VER 2000
15 mph	Ft	9/0	9/0	10 [9]/0	10/3 (1.5)	10/3 (3)	12 [11]/8 (4)
20 mph	Ft	9/0	9/0	10 [9]/0	10/3 (1.5)	10/3 (3)	12 [11]/8 (4)
25 mph	Ft	9/0	9/0	10 [9]/0	10/3 (1.5)	10/3 (3)	12/8 (4)
30 mph	Ft	9/0	9/0	10 [9]/0	11 [10]/3 (1.5)	11/3 (3)	12/8 (4)
35 mph	Ft	9/0	9/0	10 [9]/3 (1.5)	11 [10]/3 (1.5)	11/3 (3)	12/8 (4)
40 mph	Ft	9/1.5 (1.5)	10 [9]/3 (1.5)	10 [9]/3 (1.5)	11 [10]/3 (1.5)	11/4 (3)	12/8 (4)
45 mph	Ft	9/2 (1.5)	10/3 (1.5)	10/3 (1.5)	11/4 (1.5)	11/6 (3)	12/8 (4)
50 mph	Ft	10/2 (2)	10/2 (2)	10/2 (2)	11/4 (3)	12/6 (4)	12/8 (4)
55 mph	Ft	11/2 (2)	11/2 (2)	11/2 (2)	11/4 (3)	12/6 (4)	12/8 (4)
60 mph	Ft	11/2 (2)	11/2 (2)	11/2 (2)	11/4 (3)	12/6 (4)	12/8 (4)

Metric Units (meters)

DESIGN SPEED		UNDER 100	100-250	251-400	401-1500	1501-2000	0VER 2000
20 km/h	m	2.74/0	2.74/0	3.05 [2.74]/0	3.05/.91 (.46)	3.05/.91 (.91)	3.66 [3.35]/2.44 (1.22)
30 km/h	m	2.74/0	2.74/0	3.05 [2.74]/0	3.05/.91 (.46)	3.05/.91 (.91)	3.66 [3.35]/2.44 (1.22)
40 km/h	m	2.74/0	2.74/0	3.05 [2.74]/0	3.05/.91 (.46)	3.05/.91 (.91)	3.66/2.44 (1.22)
50 km/h	m	2.74/0	2.74/0	3.05 [2.74]/0	3.35 [3.05]/.91 (.46)	3.35/.91 (.91)	3.66/2.44 (1.22)
55 km/h	m	2.74/0	2.74/0	3.05 [2.74]/.91 (.46)	3.35 [3.05]/.91 (.46)	3.35/.91 (.91)	3.66/2.44 (1.22)
60 km/h	m	2.74/.46 (.46)	3.05 [2.74]/.91 (.46)	3.05 [2.74]/.91 (.46)	3.35 [3.05]/.91 (.46)	3.35/1.22 (.91)	3.66/2.44 (1.22)
70 km/h	m	2.74/.61 (.46)	3.05/.91 (.46)	3.05/.91 (.46)	3.35/1.22 (.46)	3.35/1.83 (.91)	3.66/2.44 (1.22)
80 km/h	m	3.05/.61 (.61)	3.05/.61 (.61)	3.05/.61 (.61)	3.35/1.22 (.91)	3.66/1.83 (1.22)	3.66/2.44 (1.22)
90 km/h	m	3.35/.61 (.61)	3.35/.61 (.61)	3.35/.61 (.61)	3.35/1.22 (.91)	3.66/1.83 (1.22)	3.66/2.44 (1.22)
100 km/h	m	3.35/.61 (.61)	3.35/.61 (.61)	3.35/.61 (.61)	3.35/1.22 (.91)	3.66/1.83 (1.22)	3.66/2.44 (1.22)
100 1011	<u> </u>			<u> </u>			

Notes: 1. 4 ft. (1.22m) min. offset from travelway to vertical barrier over 8 in. (200 mm) high.

- 2. 1 ft. (310 mm) min. 2 ft. (610 mm) desirable offset from travelway to vertical curb.
- 3. 2 ft. (610 mm) min. offset from usable shoulder to vertical barrier over 8 in. (200 mm) high.
- 4. () = Minimum paved shoulder for bicycle accommodation.
- 5. [] = Local Road minimum travel lane.

^{*} This table incorporates MassHighway Low Speed/Low Volume Roadway Standards for Collectors and Local Roads.

Page 5.12.0 through Page 5.34.0

Figure 5.2 through Figure 5.14: Replace lane and shoulder widths with values from Table 5.1

Page 5.35

Section 5.9

APPENDIX

Delete Curbs table

Page 6.29.0

Section 6.5.1.2

Deceleration Lanes

First paragraph: replace Table 6.2 with Table 6.3

Table 6.1 is replaced with the following Table:

TABLE 6.1
MINIMUM DECELERATION LENGTHS FOR EXIT TERMINALS WITH FLAT GRADES OF 2
PERCENT OR LESS

				Me	tric				
		Deceleration	length, L	(m) for des	sign speed	of exit curv	e V' (km/h)		
Highway	_	Stop condition	20	30	40	50	60	70	80
design	Speed	Condition	For	average ru	inning spee	d on exit c	urve V'a (kr	n/h)	70
speed, V (km/h)	reached, V _a (km/h)	0	20	28	.35	42	51	63	70
50	47	75	70	60	45 65	- - 55	· -	_	. –
60	55 63	95 110	90 105	80 95	85	70	55	_ EE	-
70 80	70	130	125	115	100 120	90 110	80 100	55 75	60
90	77	145 170	140 165	135 155	145	135	120	100	85
100 110	85 91	180	180	170	160	150 170	140 155	120 140	105 120
120	98	200	195	185	175	1/0	133		

V = design speed of highway (km/h)

V_a = average running speed on highway (km/h)

V' = design speed of exit curve (km/h)

/'a = average running speed on exit curve (km/h)

				US C	ustomar	у				
		Deceleration	on length	, L (ft) for e	design spe	ed of exit	curve, V'	(mph)		
	,	Stop condition	15	20	25	30	35	40	45	50
Highway	Speed	Condition	F	or average	running s	peed on e	xit curve,	V'a (mph)		
design speed, V	reached, V _a (mph)	0	14	18	22	26	30	36	40	44
(mph) 30	28	235	200	170	140 185	150		_	_	
35 40	32 36	280 320	250 295	210 265	235	185	1.55	-	_	_
45	40	385 435	350 405	325 385	295 355	250 315	220 285	225	175	-
50 55	44 48	480	455	440	410 460	380 430	350 405	285 350	235 300	240
60 65	52 55	530 570	500 540	480 520	500	470	440	390 440	340 390	280 340
70	58	615	5 90	570 620	5 50 600	5 20 5 75	490 5 35	490	440	390
75 75	61	660	635	620	600	5/5	535	430	440	

V = design speed of highway (mph)

V_a = average running speed on highway (mph)

V' = design speed of exit curve (mph)

V'a =average running speed on exit curve (mph)

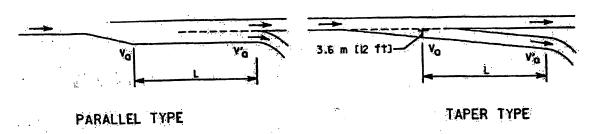


Table 6.2 is replaced with the following Table:

TABLE 6.2

MINIMUM ACCELERATION LENGTHS FOR ENTRANCE TERMINALS WITH FLAT GRADES

OF 2 PERCENT OR LESS

				Met					
	·	Acceleration	length, L	(m) for entr	ance curve	design sp	eed (km/h)		
High		Stop	20	30	40	- 50	60	70	80
Highway Speed				and	hinitial spe	ed, V'a (km	/h)		
Design speed, V	reached, V _a (km/h)	0	20	28	35	42	51	63	70
(km/h) 50	37	60	50	30	-	-	-	-	, -
60	45	95	80	65	45			-	-
70	53	150	130	110	90	65	-	-	. -
80	60	200	180	165	145	115	65	_	_
.90	67	260	245	225	205	175	125	35	-
100	74	345	325	305	285	255	205	110	40
110	81	430	410	390	370	340	290	200	125
120	88	545	530	5 15	490	460	410	325	245

					ustoma		<u> </u>			
		Accelerati	on length	, L (ft) for	entrance	curve des	ign speed	(mph)		
Highway Soeed		Stop condition	15	20	25	30	35	40	45	50
Speed Design reached					and initia	l speed, V	"a (mph)			
speed, V (mph)	V _a (mph)	0	14	18	22	26	30	36	40	44
30	23	180	140		_	-	_	-	_	_
35	27	280	220	160	_	-	_	-		
40	31	360	300	270	210	120	400	_	_	_
45	35	560	490	440	380	280	160	400	_	_
50	39	720	660	610	5 50	450	350	130	450	_
55	43	960	900	810	780	670	550	320	150	180
60	47 🐭	1200	1140	1100	1020	910	800	550	420	
65	50	1410	1350	1310	1220	1120	1000	770	600	370
70	53	1620	1560	1520	1420	1350	1230	1000	820	580
75	55	1790	1730	1630	1580	15 10	1420	1160	1040	780

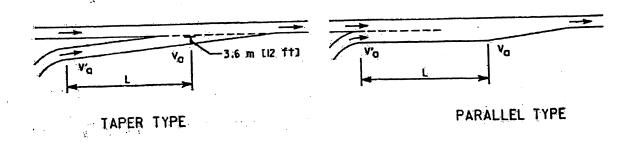


Table 6.3 is replaced with the following Table:

TABLE 6.3
SPEED CHANGE LANE ADJUSTMENT FACTORS AS A FUNCTION OF GRADE

Figure 6.13 is replaced with the following Figure:

FIGURE 6.13 WEAVING SECTIONS

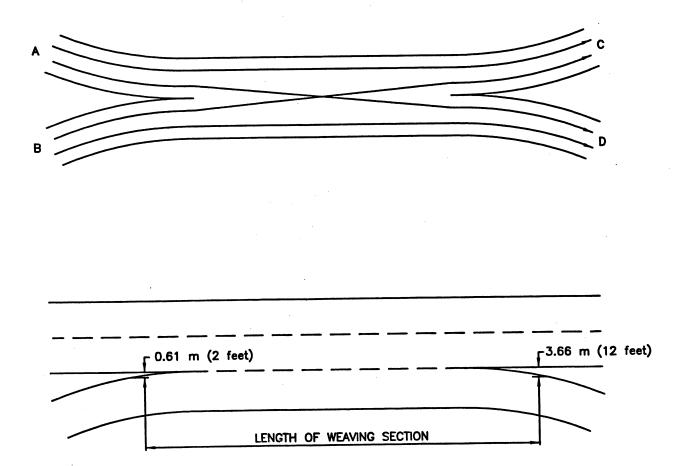


Figure 6-13. WEAVING SECTIONS

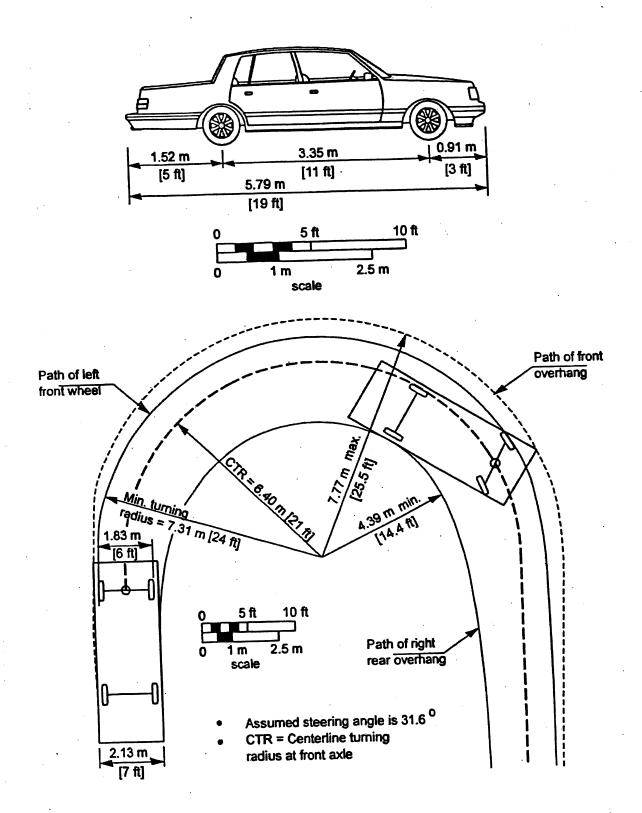
Page 6.43.0 Section 6.6.1.2 Cross Sections

Last line, replace with the following sentence:

Refer to Table 5.1 for recommended roadway section widths (travel lane widths and shoulder widths) for figures 6-18, 6-19, 6-21 through 6-29.

Page 7.01.0 Section 7.1.2 Vehicle Consideration

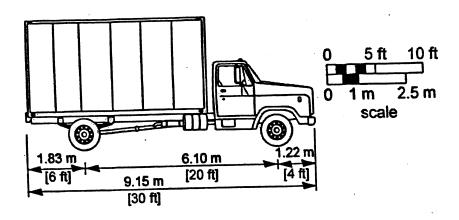
Replace the last paragraph with the following:


Vehicles turning paths yield minimum turning radii which are used in the design of intersection. Figures 7-1 to 7-8 illustrate the turning paths for the P, SU, BUS, A-BUS, WB-12, WB-15, WB-19 and WB-20 vehicles. Computer programs are available for this analysis. The vehicle dimensions in the figures are used to determine the turning radii design as discussed in Section 7.3.1. One of the semi-trailer combinations should typically be used as the design vehicle where truck traffic is anticipated. The SU vehicle should be the minimum size used. Turning paths for other design vehicles may be found in *A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS, AASHTO, 2001*.

Delete the following pages:

Page 7.03.0, Page 7.05.0, Page 7.07.0, Page 7.09.0, Page 7.11.0, and Page 7.13.0

Figure 7.1 is replaced with the following Figure:


FIGURE 7.1
MINIMUM TURNING PATH FOR PASSENGER CAR (P) DESIGN VEHICLE

Page 7.04.0

Figure 7.2 is replaced with the following Figure:

FIGURE 7.2 MINIMUM TURNING PATH FOR SINGLE-UNIT (SU) TRUCK DESIGN VEHICLE

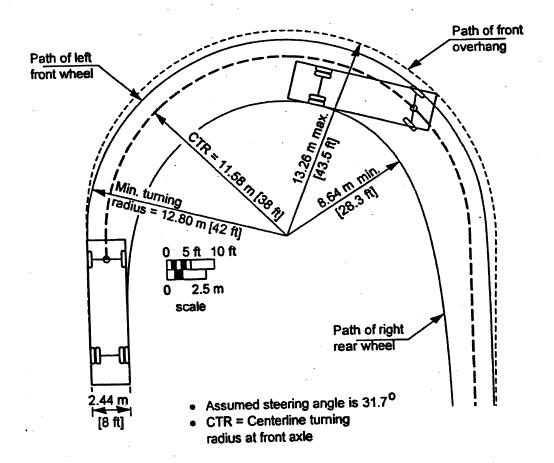
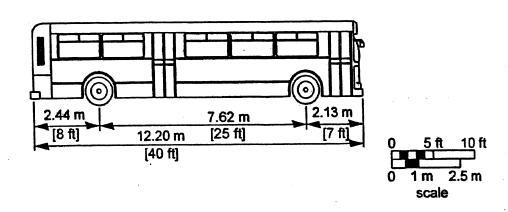
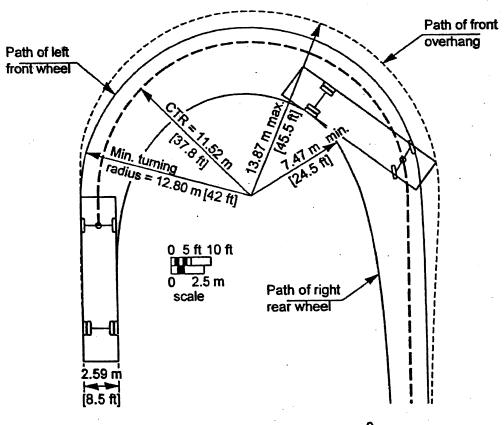
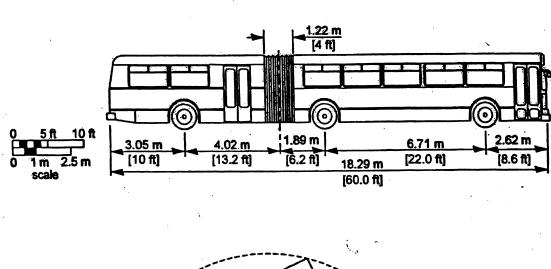




Figure 7.3 is replaced with the following Figure:

FIGURE 7.3
MINIMUM TURNING PATH FOR CITY TRANSIT BUS (CITY-BUS) DESIGN VEHICLE



- Assumed steering angle is 41⁰
- CTR = Centerline turning radius at front axle

Figure 7.4 is replaced with the following Figure:

FIGURE 7.4
MINIMUM TURNING PATH FOR ARTICULATED BUS (A-BUS) DESIGN VEHICLE

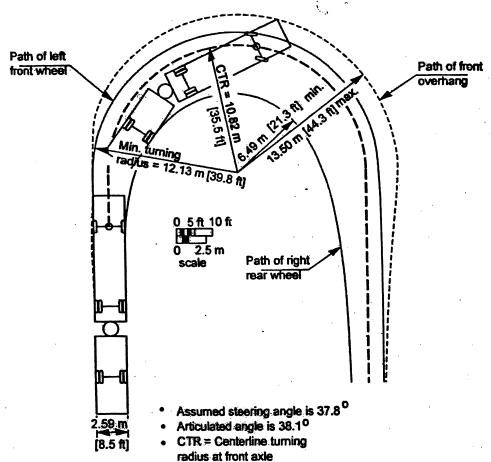
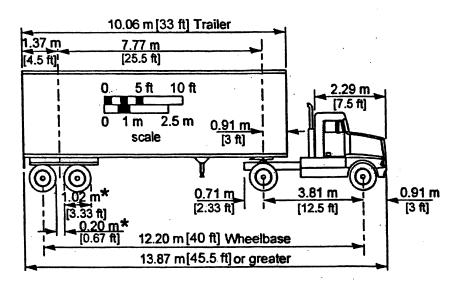



Figure 7.5 is replaced with the following Figure:

FIGURE 7.5
MINIMUM TURNING PATH FOR INTERMEDIATE SEMITRAILER (WB-12 [WB-40])

* Typical tire size and space between tires applies to all trailers.

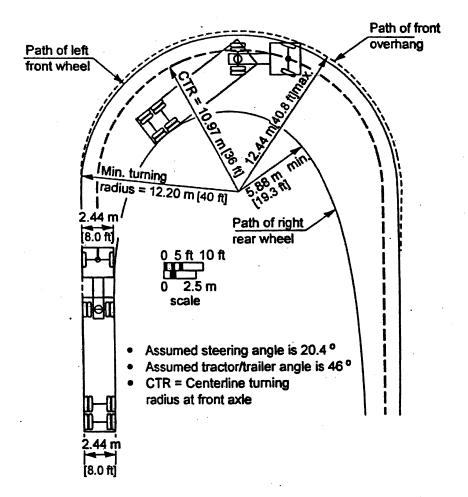
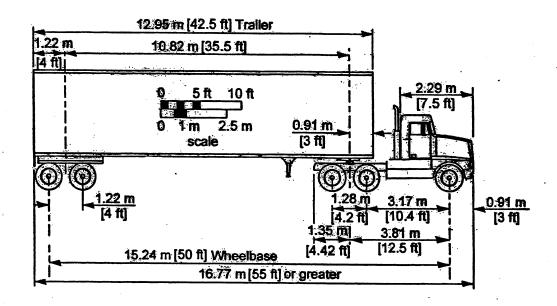



Figure 7.6 is replaced with the following Figure:

FIGURE 7.6
MINIMUM TURNING PATH FOR INTERMEDIATE SEMITRAILER (WB-15 [WB-50])
DESIGN VEHICLE

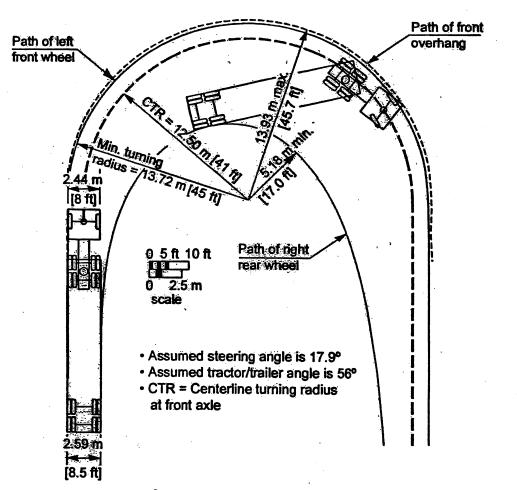


Figure 7.7 is replaced with the following Figure:

FIGURE 7.7

MINIMUM TURNING PATH FOR INTERSTATE SEMITRAILER (WB-19 [WB-62])

DESIGN VEHICLE

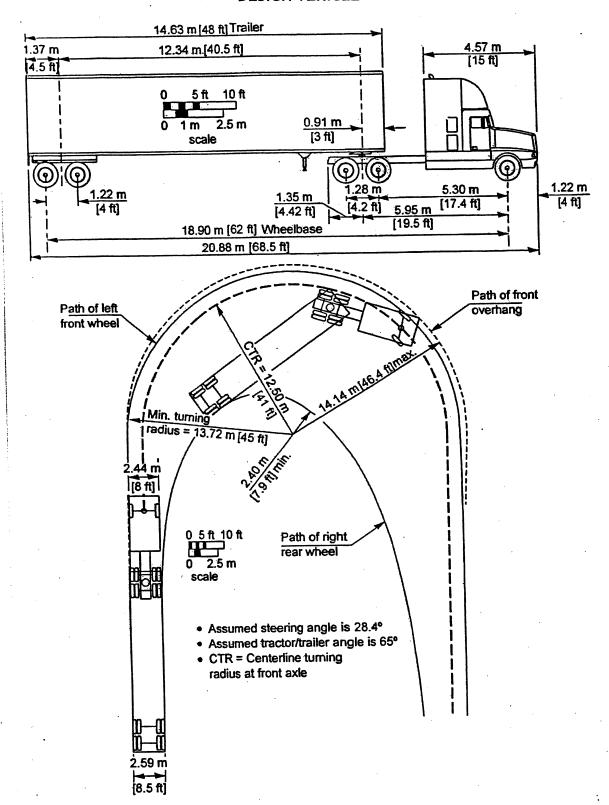
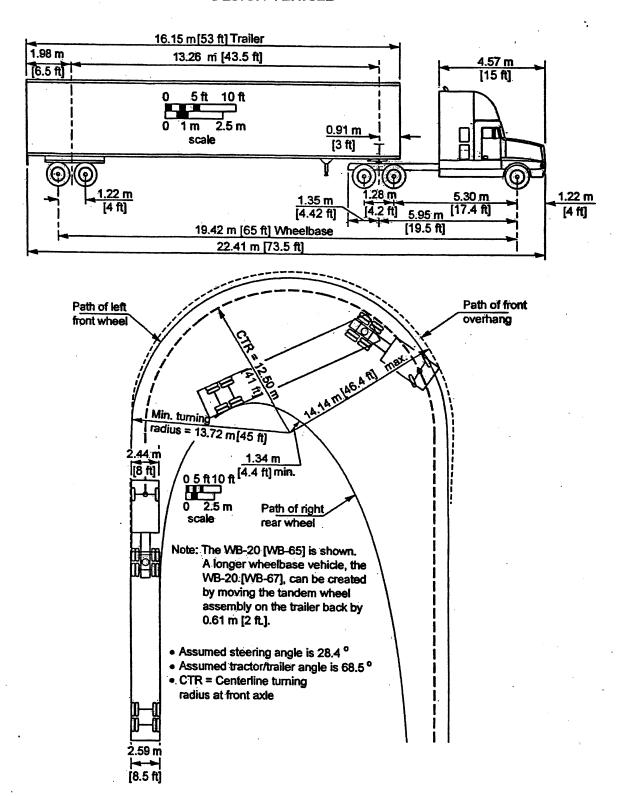



Figure 7.7 is replaced with the following Figure:

FIGURE 7.8

MINIMUM TURNING PATH FOR INTERSTATE SEMITRAILER (WB-20 [WB-65 AND WB-67])

DESIGN VEHICLE

Page 7.19.0 Section 7.1.6 Control

Last paragraph: replace Part IV of the MUTCD. With Part 4 of the MUTCD.

Page 7.20.0 Section 7.1.6 Control

Third paragraph: replace MUTCD. with **the MUTCD 2000**.

Replace the fourth paragraph with the following:

The investigation of the need for a traffic control signal shall include an analysis of the applicable factors contained in the following traffic signal warrants and other factors related to existing operation and safety at the study location:

Warrant 1, Eight-Hour Vehicular Volume.

Warrant 2, Four-Hour Vehicular Volume.

Warrant 3, Peak Hour.

Warrant 4, Pedestrian Volume.

Warrant 5, School Crossing

Warrant 6, Coordinated Signal System

Warrant 7, Crash Experience

Warrant 8, Roadway Network

Last paragraph before the last: replace <u>Section II of the MUTCD</u>. with **Section 2 of the MUTCD 2000**.

Page 7.21.0 Section 7.1.6 Control

Replace the first three paragraphs, including the bottom sentence on Page 7.20.0 with the following:

A number of techniques are available for evaluating the operation of signalized and unsignalized intersections, determining the appropriate signal-timing scheme and evaluating design alternatives. Among these techniques, the most important are:

• Lane Movement based capacity analysis technique from the latest edition of the Highway Capacity Manual (HCM).

- Computer software applications based on the latest edition of the HCM, including: Highway Capacity Software (HCS), Trafficware Synchro, and aaSIDRA (Signalized and unsignalized Intersection Design and Research Aid).
- Vehicle queue lengths are a required output for all intersection capacity analysis calculations. The calculation should measure the average and 95th-percentile maximum back of queue, and utilized an average vehicle spacing of 7.62 meters.
- For signal-optimization, vehicle progression or signal coordination techniques, the use of one of the following programs is encouraged:
 - a. Synchro
 - b. Transyt 7-F
 - c. Passer II
- For simulation of traffic signal systems on an arterial or network, the use of either of the following programs is suggested:
 - a. SimTraffic
 - b. TSIS (CORSIM)

Page 7.23.0 Section 7.2 INTERSECTION SIGHT DISTANCE

Eliminate whole Section 7.2 and refer to:

AASHTO 2001, CHAPTER 9

Alignment and Profile Pages 584 through 586
INTERSECTION SIGHT DISTANCE Pages 654 through 680
Effect of Skew Page 681

Page 7.36.0 Section 7.3 INTERSECTION TURNS

Add the following first paragraph:

Refer to Table 5.1 for recommended roadway section widths.

Page 7.59.0 Section 7.3.3 Two-Way Left-Turn Lanes

Last paragraph: replace The preferred lane width is 4.5 meters with a minimum of 3.75 with The preferred lane width is 4.57 meters with a minimum of 3.66

Page 8.02.0 Section 8.1 DESIGN EXCEPTIONS

First paragraph: replace <u>justified within Function Design Report</u>. With **justified with a Function Design Report**.

Delete second paragraph

Delete Table 8.1

Page 8.03.0 Section 8.1 DESIGN EXCEPTIONS

Delete first two lines (top of page)

Page 8.05.0 Section 8.2 Low Speed/Low Volume Roads

Last paragraph: replace <u>Low speed is defined as less than 70 km/h</u>. with **Low speed is defined as less than or equal 70 km/h** (45 km/h).

Page 8.07.0 Section 8.2.1 Design Criteria for Low Speed/Low Volume Roadways

Delete Table 8.2

Refer to Table 5.1 for Minimum Roadway Widths for Low Speed/Low Volume Roadways

Section 9.1

Replace Section 9.1 with the following:

9.1 CRASH DATA AND APPLICATIONS

9.1.1 MHD Crash Data System

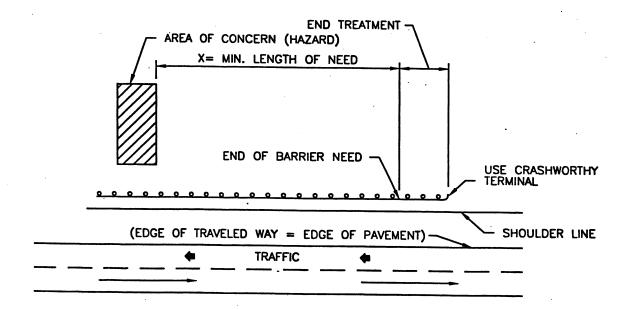
Historical crash data should be reviewed during the design of any reconstruction project. A minimum of the latest 3 years of crash data is required for calculation of crash rates, analysis of trends, and documentation of probable causes; including geometric shortfalls, safety hazards, and stopping sight distances if applicable. Discussion of potential remedial action should be included along with suggested mitigative design measures to address the identified hazards.

Crash rates should be calculated for intersections based on a Million Entering Vehicles (MEV) and for roadway segments based on a Hundred Million Vehicle kiloMeters of travel (HMVM) if adequate crash data is available. The equations for calculating these rates are as follows:

$$R_{int.} = \frac{A*1,000,000}{V*T}$$
 $R_{Seg.} = \frac{A*100,000,000}{VMT}$

Where:
 A = Average number of crashes at the study location, during a given time period (usually 1 year = 365 days)
 V = Intersection ADT (all approach legs)
 VMT = Segment ADT * Time Period * Length of Roadway Section
 T = Time, expressed in the number of days in the study period

Crash data is available for all State-maintained highways and local roadways from the MassHighway Traffic Operations & Safety section. The following crash reports can be obtained:


- 1. Annual City & Town Data Files The Crash Data System (CDS) can provide a summary of all of the crashes, both vehicular and pedestrian, for any given city or town in the Commonwealth. All crash specific details are included in these reports.
- 2. Top 1000 High Crash Locations Report A summary analysis of three-years of crash data to generate the top 1000 high crash locations in the State in terms of crash occurrence and severity. Data classified by rank and alphabetically by city and town.
- 3. Intersection Crash Rates The average statewide crash rates for both signalized and unsignalized intersections are computed based on available data. District specific rates are also generated.

Future system enhancements will generate additional report and querying functions for the CDS. It is anticipated that the crash data system will be linked to a Geographic Information Systems (GIS) format to improve on the location data and statistical reporting.

Section 9.3.3.2

LENGTH OF NEED

Figure 9.2 is replaced with the following Figure:

SEE THE 2002 AASHTO ROADSIDE DESIGN GUIDE FOR LENGTH-OF-NEED CALCULATIONS

Note:

THE DISTANCE BEYOND THE HAZARD SHOULD BE DETERMINED BY A LENGTH-OF-NEED CALCULATION FOR OPPOSING TRAFFIC, IF APPLICABLE.

Figure 9-2. BARRIER LENGTH OF NEED